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Fundamental Structures in Physics: A Categorical
Approach†
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As already remarked by Eilenberg and MacLane in their seminal paper on category
theory, preordered classes can be considered as thin categories, that is, categories
for which each Hom-set contains at most one element. In this paper I briefly
describe how this identification not only allows much of the theory of order
structures to be reformulated in categorical terms, but also permits the application
of general categorical techniques to specific order-theoretic problems.

1. INTRODUCTION

When one first encounters a new type of mathematical structure it is
often useful to consider simple paradigm examples. In category theory, three
such examples are preordered classes, namely categories with at most a single
morphism between any two objects, monoids, namely categories with a
single object, and Set, a category with an equilibrium between objects and
morphisms. First, I shall give a brief expository discussion of the first of
these, brief in the sense that proofs will be given only when they are short
and instructive, and expository in the sense that I claim no originality in the
examples I have chosen. Second, I shall indicate how this formalism not
only allows an elegant reconstruction of much of the theory of order structures,
but also has a direct application to the foundations of physics.

2. ORDER AND CATEGORY

In this section I shall summarize the category-theoretic presentation of
order structures, following (Moore, 1995, 1997). First, I shall discuss the
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dual isomorphism between the categories JCLatt and MCLatt provided by
the Galois adjunction, before specializing to the cases of atomistic and ortho-
complemented lattices. Second, I shall consider closure operators in general
and the equivalence between the categories JCALatt and CSpace in particular.

2.1. Category Theory

The basic notions of category theory are morphisms as relations between
objects, functors as relations between morphisms, and natural transformations
as relations between functors. For preordered classes we then have that:

• There exists a morphism a: a → b if and only if a , b.
• f : X → Y is a functor if and only if it is isotone.
• There exists a natural transformation u: f → g if and only if f , g.

Further, the basic tools of category theory are limits as local universal con-
structions, adjoints as global universal constructions, and the adjoint functor
theorem. For complete lattices we then have that:

• Products are meets and coproducts are joins.
• f ¢ g if and only if a1 , g(a2) ⇔ f (a1) , a2

• g(a2) 5 ∨{a1 P L1. f(a1) , a2} and f (a1) 5 ∧{a2 P L2.a1 , g(a2)}

In particular, f preserves joins and g preserves meets. For notational conve-
nience I shall often write f ¢ f* and g* ¢ g. Note that id , g + f and
f + g , id, so that f + g + f 5 f and g + f + g 5 g. First, f (a) , f(a), so that
a , (g + f )(a) with associated inequalities f , f + g + f and g , g + f + g.
Second, g(a) , g(a), so that ( f + g)(a) , a with associated inequalities f +
g + f , f and g + f + g , g.

2.2. Atoms and Orthocomplementations

If L is a lattice with minimal element 0, an element p Þ 0 is called an
atom if x , p implies x 5 0 or x 5 p. We write S for the (possibly empty)
set of atoms of L. The lattice L is then called atomistic if for each a P L
we have that a 5 ∨{p P S.p , a}. Now for f ¢ g: L2 → L1 an adjunction
between complete atomistic lattices, the following two conditions are
equivalent:

• f (S1) # S2 ø {02}.
• (∀p P S1)(∃p2 P S2)p1 , g( p2).

The Galois adjunction then restricts to an isomorphism between JCALatt and
MCALattop. On the other hand, an orthocomplementation is a map 8: L →
L such that a , b implies b8 , a8, a ∧ a8 5 0, a9 5 a. Note that L then
has maximal element 1 5 08, and a ∨ b 5 (a8 ∧ b8)8. In particular, the
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Galois adjunction defines isomorphisms between JCOLatt and JCOLattop and
MCOLatt and MCOLattop via the following correspondences:

• f †: L2 → L1: a2 → f *(a82)8.
• g†: L1 → L2: a1 → g*(a81)8.

Indeed, if f ¢ g, then f † ¢ g†, since a1 , g†(a2) if and only if a1 , f (a82)8 if
and only if f (a82) , a81 if and only if a82 , g(a81) if and only if g(a81)8 , a2 if
and only if f †(a1) , a2. We do not require morphisms in JCOLatt or MCOLatt
to preserve the orthocomplementation. Restricting either of these categories
by this condition, we then obtain the category COLatt, for which h*(a82) 5
h*(a2)8 and h*(a82) 5 h*(g2)8, since h*(a82) , a1 if and only if a82 , h(a1) if
and only if f (a81) 5 h(a1)8 , a2 if and only if a81 , f *(a2) if and only if
f *(a2)8 , a1. In particular, f †(a2) 5 f *(a82)8 5 f*(a92) 5 f*(a2) and f†(a2) 5
f *(a82)8 5 f *(a92) 5 f *(a2).

2.3. Monads

A closure operator on the poset L is a map T: L → L such that: if a ,
b, then T(a) , T(b); a , T(a) for each a P L; (T + T )(a) , T(a) for each
a P L. In categorical terms, a closure operator is then an endofunctor T on
L together with natural transformations h: id → T and m: T + T → T. Imposing
the obvious compatibility conditions m + Tm 5 m + mT, m + Th 5 idT, and
m + hT 5 idT, closure operators are then exactly monads. Now to each monad
we can associate its Eilenberg–Moore cateory LT, whose objects are pairs
(a, a) for a: Ta → a such that a + ha 5 ida and a + T(a) 5 a + ma , and
whose morphisms are morphisms f : a → b such that f + a 5 b + T( f ). In
the context of posets, the Eilenberg–Moore category is just the set of fixed
points of T with the induced order, since the existence of a: T(a) → a is
equivalent to the condition T(a) , a , T(a). Further, for each monad on L
we have the adjunction F T ¢ U T, where:

• U T: LT → L: (a, a) ° a; f ° f
• F T: L → LT: a ° (T(a), ma); f ° T( f ).

Since F T preserves colimits and U T preserves limits, the Eilenberg–Moore
category associated to a closure operator T on the complete lattice L is itself
a complete lattice, with ∧TA 5 ∧A and ∨TA 5 T(∨A). Finally, any adjunction
M ¢ N: L2 → L1 induces the monad (N + M, h, N ε M ) on L1, the unique
functor K: L2 → LN + M

1 satisfying N 5 U + K and F 5 K + M being given by
K: a ° (Na, N εa); f ° Nf. In particular, the Eilenberg–Moore category
associated to N + M is just the image of N.
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2.4. Closure Spaces

A closure operator T on the atomistic lattice L is called simple if T(0) 5
0 and T((L) # (L , where (L is the set of atoms of L. Then LT is atomistic
and has the same atoms as L. In particular, let us call a closure space a set
( together with a simple closure operator T on 3((). Then to each closure
space we can associate a complete atomistic lattice. The converse is also
true, since for each complete atomistic lattice we can define the adjunction
pL ¢ iL by

• iL: L → 3((L): a ° {p P (L.p , a}
• pL: 3((L) → L: A ° ∨A

with corresponding closure operator iL + pL: 3((L) → 3((L): A ° {p P
(L.p , ∨A}. Let us define a morphism in CSpace to be a partially defined
map u: (1 \K1 → (2 satisfying equivalently u(T1A1 \K1) # T2u(A1 \K1) or
T1(K1øu21(T2A2)) 5 K1øu21(T2A2). The above object correspondence then
extends to the categorical equivalence between the JCALatt and CSpace
defined by the adjunction L ¢ C, where

• L: ((, T ) ° 3(()T; u ° fu: 3((1)T1 → 3((2)T2: A1 ° T2u(A1 \K1)
• C: L ° ((L , ix + px); f ° uf : (1 \ f *(02) → (2: p1 ° f ( p1)

Finally, this equivalence restricts to an equivalence between JCAOLatt and
OSpace, the category of sets equipped with an orthogonality relation. Indeed,
A ° A'' is a simple closure operator on 3((), and A is biorthogonal if and
only if A 5 {p P (.p , ∨A}.

3. APPLICATIONS

In this section I shall summarize some applications of adjunctions in
the foundations of physics. First, I shall discuss the primitive notions of state-
property duality and classical variables following Moore (1999) and Piron
(1990, §1). Second, I shall consider the derived notions of evolutions and
observables, following Faure et al. (1995) and Piron (1976, §2), respectively.

3.1. State Property Duality

A physical system may be described by either its properties, the elements
of reality associated to definite experimental projects that one could effectuate
on the system, or by its states, construed as abstract names for singular
realizations of the physical system. The set of properties is then a complete
lattice, the meet being obtained from the product definite experimental project,
whereas the set of states is equipped with the orthogonality relation defined
by calling two states orthogonal if they can be distinguished by a given
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definite experimental project. The standard axioms then imply that the set
of properties is a complete atomistic ortholattice and that the set of states is
an orthogonality space. In particular, the property and state representations
are dual via the equivalence between JCALatt and OSpace, states correspond-
ing to the set of their actual properties and properties corresponding to the
set of states for which they are actual. Further, the adjunction condition has
a direct physical interpretation, since if f ¢ g, then g(a2) is the weakest
property in L1 guaranteeing the actuality of a2 in L2, whereas f (a1) is the
strongest property in L2 whose actuality is guaranteed by a1 P L1. Note that
the application of this duality to the Hilbertian context leads to both the
characterization of semilinear maps as representations for morphisms of
projective geometries and the inner product as a realization of the canonical
polarity between a projective geometry and its dual.

3.2. Classical Variables

An element c of the lattice L is called central if L admits a direct product
decomposition p: L1 3 L2 → L with c 5 p(1, 0); in which case c has unique
complement c8 5 p(0, 1). In particular, the center Z of any ortholattice is a
Boolean subalgebra. Now for any complete lattice we have that (∨A) ∧ c 5
∨(A ∧ c) for any A # L. If Z is complete and (∨C ) ∧ a 5 ∨(C ∧ a) for any
C # Z, then L is called a ]-lattice. Note that this is the case for atomistic
ortholattices, in which case Z is also atomistic with atoms a P V induced
by the left adjoint to the inclusion i: Z → L. We then obtain the central
decomposition, since a 5 1 ∧ a 5 (∨V) ∧ a 5 ∨(V ∧ a). Physically, the
central elements of a property lattice coincide with classical properties, that
is, a property c such that for each state either c or c8 is actual. Indeed, let c
be classical. Then for each atom p P L either p , c or p , c8, so that for
each p , a either p , a ∧ c or p , a ∧ c8, and a 5 ∨{p.p , a} 5 (∨{p.p
, a ∧ c}) ∨ (∨{p.p , a ∧ c8}) 5 (a ∧ c) ∨ (a ∧ c8). Hence c is central.
On the other hand, let c P L be central, and p P L be an atom. Then since
p ∧ c , p, either p ∧ c 5 p or p ∧ c 5 0. In the first case p , c. In the
second case p 5 ( p ∧ c) ∨ ( p ∧ c8) 5 0 ∨ ( p ∧ c8) 5 p ∧ c8, and so p ,
c8. Hence c is classical.

3.3. Observables

An observable is an orthomorphism m: B → L, where B is a complete
Boolean algebra representing the measurement scale as a directed limit of
refinements of possible outcome sets. For E the set of atoms of B we then
obtain the spectrum:

• N 5 m*(0)
• D 5 ∨{E P E. E , N 8}
• C 5 D8 ∧ N 8
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Here N represents the kernel, since m(B) 5 0 if and only if m(B) , 0 if and
only if B , m*(0). Further, D represents the discrete spectrum, since by
construction [0, D] is atomistic and so a power set. Finally, C represents the
continuous spectrum, since by construction [0, C ] is atomless. Note that
observables can be trivially decomposed into classical components. In particu-
lar, classical observables have discrete spectrum and so are determined by
functions f : ( → E. Explicitly, the observable m: B → + preserves the meet
and so has left adjoint m*: + → B: a ° ∧{B P B . a , m(B)}. Defining
Ep 5 m*( p), one can prove that the Ep exhaust all atoms E , D and that
C 5 0. We can then define f : (→ E: p ° Ep. On the other hand, for the
case of a system described by a separable Hilbert space *, Wade’s theorem
implies that each observable is generated by a self-adjoint operator, since the
image of m is the projection lattice of a Boolean von Neumann subalgebra
of @(*).

3.4. Evolutions

An externally imposed evolution can be partially described by its inter-
pretation as an initial segment of experimental projects. Explicitly, to each
experimental project a2 defined at time t2 one can associate the experimental
project a1 5 F(a2) defined at time t1 by the prescription, “Evolve the system
from time t1 and time t2 and effectuate a2.” Since F preserves products, it
then induces a map w: L2 → L1 which preserves nonempty meets, and so
has a left adjoint c: [0, w(12)] → L2. Note that in general the domain [0,
w(12)] is orthocomplemented if and only if L1 is orthomodular, in which case
we can extend the domain of c to all of L1 by composition with the appropriate
Sasaki projection. Now for p1 an atom, c( p1) is the strongest final property
which is actual by the evolution. In the simplest case, this property will be
either an atom, thereby determining the final state, or 02, indicating that the
initial state could be destroyed by the evolution. Further, if the evolution is
sufficiently stable, two orthogonal final states must arise from two orthogonal
initial states, since if a2 separates the final states, then F(a2) separates the
initial states. In the Hilbertian context we can then recover the description
of maximal deterministic evolutions by unitary flows. On the other hand
from the definition of ideal measurements of the first kind as consistent
experiments leading to minimal perturbation, we recover both their character-
ization as projections and the usual formula for the a priori probability.
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